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On the Convergence of the p-Version of the 
Boundary Element Galerkin Method 

By E. P. Stephan and M. Sur! 

Abstract. We prove convergence for the p-version of Galerkin boundary element 
schemes applied to various first-kind integral equations. We establish optimal error 
estimates for the p-version in the H1/2 and H 1/2-norms and also derive rates of con- 
vergence in slightly stronger norms when the exact nature of the singularity of the 
solution is known. Our results lead to a boundary element method for two-dimensional 
screen problems in acoustics, which has twice the rate of convergence of the usual h- 
version with uniform mesh. An application to three-dimensional exterior problems is 
also analyzed. 

1. Introduction. Over the last ten years there has been a spectacular increase 
in research and applications of boundary element techniques. There has been an 
explosion of books, as well as a series of international conferences [10], specially 
dedicated to boundary element methods (BEM). The state of the art of asymp- 
totic error estimates of the h-version for BEM is described in several articles (see, 
for example, [24], [25]). There, the theoretical framework for both first-kind and 
second-kind integral equations is the theory of pseudodifferential operators. As 
observed in [21], for strongly elliptic pseudodifferential operators one has conver- 
gence of any Galerkin scheme with conforming boundary elements; also, there holds 
quasioptimality of the Galerkin error in the energy norm. 

Almost all work on BEM has been performed with the h-version, where the 
degree p of the elements is fixed, usually at a low value, typically p = 0,1,2, 
and the accuracy is achieved by properly refining the mesh. Only recently has 
the p-version been introduced into the BEM [1], [2], [3], [26]. The p-version fixes 
the mesh and achieves the accuracy by increasing the degrees p of the elements, 
uniformly or selectively. In the finite element method (FEM) the convergence of the 
p-version has been thoroughly investigated for one- and two-dimensional boundary 
value problems in a series of papers by Babuska and others [4], [5], [6], [7], [12]. 
Meanwhile, convergence results have also been derived for the h-p version of the 
finite element method, which is a combination of the standard h-version and the 
p-version [4], [8], [13], [14]. 

In this paper, we prove the convergence of the p-version for some Galerkin bound- 
ary element schemes which use first-kind integral equations. In Section 2 we in- 
troduce the function spaces and corresponding norms used later on. In Subsection 
3.1 we show that the rate of convergence of the p-version is an optimal one in the 
H'/2 and H-"/2-norms, generalizing known results for Hl and L2-norms. In Sub- 
sections 3.2, 3.3 we approximate singular functions by the p-version in the fj1/2 
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and H"-/2-norms, and we derive convergence rates which are twice the rate of the 
h-version with uniform mesh. In Section 4 we apply the approximation results of 
Section 3 to the Galerkin BEM for several integral equations which are strongly 
elliptic pseudodifferential equations. As examples, we consider the two-dimensional 
screen Neumann and Dirichlet problems in acoustics, where sharp regularity results 
for the solutions are available [22], [23]. Furthermore, we give first-kind boundary 
integral equations governing the exterior Dirichlet and Neumann problems of the 
three-dimensional Helmholtz equation, and we present the convergence rates for 
the p-version of the corresponding boundary element Galerkin schemes. 

2. Notation. Let F be a simply connected, bounded, smooth, closed curve in 
R2 and r be a connected subset of f. By C(k)(i ), 0 < k < oo (k integer), we 
denote the space of all functions with continuous derivatives of order up to k on F. 

As in [18], the Sobolev spaces H8(f) are defined for s > 0 to be the restrictions of 
HS+1/2(R2) to f and for s < 0 by duality, 

H8(I) = (H-8())' 

with H (r) = L2 (F). These spaces are used to define the corresponding spaces of 
distributions on r, namely, for any real s, 

118(r) = {u E HI(f): supp uc 

H8(r) = {ulr: u E H8(f)}. 

The above spaces are normed as follows. For u defined on r, let lu denote any 
extension of u on F and u* denote the zero extension of u on F. Then 

(2.1) IIUIIiS(r) = IIUIIHs(r)X 

(2.2) I1u11HS(r) = inf{IIluIIHS(j): lu E H8(f)}. 

Note that for s > 1/2, s $ integer +1/2, H8(r) is the usual Ho(r) space, and 
for -1/2 < s < 1/2, H8(r) = H8(r). For s < -1/2, s $ integer +1/2, we have 
H8(r) = (H-8(r))'. We will be particularly interested in the cases s = 1/2 and 
s =-1/2. For s = 1/2, the space H r/2(F) is also denoted by H/2(r), with the 
equivalent norm (see [18]) 

(2.3) ||U11i1/2(r) IIUIIH2/2(r) + 11(1 x2)-1/2uI12 

where for simplicity we have assumed r = (-1, + 1) (the general case can be treated 
by affine maps) and x denotes the arc length. In terms of duality, the following 
relations hold 

H1/2-(r) = (Il/2(r)), H-1/2(r) = (H1/2(r))' 

Let f be of length 2ir; then H8 (r) may be considered to be spaces of 2r-periodic 
functions. For u E H8(f), we may then write 

00 00 

(2.4) u(0) = E aj cos je + E bj sin j(, 
j=o j=1 
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so that the H8(r)-norm may be equivalently defined by 

. 1/2 

(2-5) IIUIIH. (t); 3 j( 28+Eb21+j) 
&.=o j=l 

For I a smooth open arc, we will define Yp (I) to be the set of all algebraic 
polynomials of degree less than or equal to p in x, the arc length parameter. ?Y'p(I) 
will denote the subset of polynomials vanishing at the end points of I. 

Let us now subdivide f into N pieces, r = UtN1 i, such that ri is a smooth 
open arc with end points Ai-1, Ai (A0 = AN). Then, for p > 0, Sp(F) will denote 
the set of all functions u defined on F such that the restriction ulri to ri belongs 
to p(ri). Moreover, we set for p > 1, 

vp(r) = sp(r) n cf?(F). 

We may assume that r is partitioned analogously and define Sp (F), vp (r) as above. 
Then Sp(r) , v10(r) will denote the subsets of functions that vanish at the end points 
of r. 

Note that Sp(r) (sp(r)) is a subset of H-1/2(r) (H-1/2(r)) while Vp(f) (Vy(r)) 
is a subset of H1/2(f) (H1/2(r)), and Vp(r) is a subset of Hl/2(r). 

So far, we have dealt with the one-dimensional case. We will also be interested 
in a simply connected, bounded, smooth, closed surface F C R3. The definitions 
of H8(f) are analogous to the previous case. We now assume that F is partitioned 
into curvilinear quadrilaterals and triangles, i.e., F = U=1 ri. Let Q and T be the 
reference square and triangle, respectively; then, rF = 9(Q) or F(T), where g is 
a smooth bijective mapping. We assume that the intersection of any two distinct 
ri's is either the empty set or a common vertex or a common side. 

By Y91 (T) we will denote the set of all polynomials of total degree < p on the 
triangle T. S 2(Q) will denote the set of all polynomials of degree < p in each 
variable on Q. We define 

(2.6) Sp(f) = {u uIrX(F(()) E ,9A(T) if ri is a triangle and 

ulr, ( E(()) E 2Y' (Q) if ri is a quadrilateral} 

and 

(2.7) vp(f) = sp(F) n c?)(r). 

3. Approximation Theorems. In this section we will be interested in ob- 
taining estimates for the approximation of functions in H8(r), H8(r) and H8(r) 
by piecewise polynomials belonging to the polynomial subspaces introduced in the 
previous section. 

3.1. Approximation of Functions in H8. We first present some results for the 
case when u, the function being approximated, is known to lie in H8. These will 
be used in the next section for approximating problems on closed curves and closed 
surfaces. 

In what follows, r will denote either a closed curve or a closed surface. 
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THEOREM 3.1. Let -y = or1r. Let u E H8(y), s > 1/2. Then for p = 1, 2, ... 
there exists up E Vp(-) such that 

(3.1) I|u - UPIIH1/2(,) < Cp (S 1/2)l1U11HS(-), 

where the constant C is independent of u and p, but depends on s and the partition 
on -y. Moreover, for u E H8(r), 

(3.2) |lu - Upillfl/2(r) < Cp ( /(r), 

Proof. The estimate (3.1) follows by interpolating the approximation estimates 
for the p-version obtained in the Ho and Hl-norm (see [6]). In [7, Theorem 3.2], 
an alternative proof (for closed curves), using Chebyshev expansions, is provided. 
Moreover, (3.2) is also proved in this theorem, the procedure being similar to our 
proof of Theorem 3.3 in Subsection 3.2. 0 

The above theorem provides estimates for the error of the best approximation 
in the Hl/2 and H1/2-norms. The next theorem provides estimates in the H-1/2- 

norm. It has been proved in [9] for -y a closed curve, and it is included here for 
completeness. 

THEOREM 3.2. Let -ty = or r,u E H8(-y), s > 0. Then for p = 1,2,3,... 
there exists up E Vp (y) such that 

(3.3) lIu - uplj| 1/2(,-.) < CP (s+1/2)llulHS(w), 

where the constant C is independent of u and p, but depends upon s and the grid 
on -y. 

Proof. Let up E Vp(-y) satisfy 

(3.4) f upw d( = uw df for all w E Vp(y). 

Here, up is the best L2-approximation to u in Vp(-y), i.e., 

IIUP -UjL2(1) = inf liv - UlIL2('-). v EVp (-Y) 

Therefore, with e = u - up, we have (see [13]) 

(3.5) jje1||H? (-) < CP 8 ||U ||H- (,-) 

Now, if 0 $ v E H'(-I), then by (3.4), 

f- ev d f I?e(v -y) df jje11H0(-j) |V- YIIHO(,) 

||V||H1 (-) ||V||H1 (-) ||V||H1 (-) 

< Cp-1lje11H0(,), 

where y E Vp(-y) satisfies 

iv - Y11H0(-) < Cp' IIVIIH1(). 

This yields 
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We obtain (3.3) by interpolating (3.5), (3.6) and using the fact that 

j-1/2(,Y) = (H'/2(,Y))' = ((Ho(y), H' (-Y)l/2)' 

= (Ho(y) (H' (I))' )1/2, 
which follows from Theorem 6.2 in [18]. 0 

Remark 3.1. For -y = F, we have ftk(r) = Hk(r). For ry = F, we have 

11 II IIH-1/2(r) < 
1 Hence, in either case, (3.3) yields 

(3.7) ||u - UP IH-1/2 (,) < Cp (8+1/2) ||U|IHS(,.). 

Remark 3.2. Since Vp (-) c Sp('), we see that (3.3) and (3.7) also hold for some 
up E Sp(-4 

Remark 3.3. So far, we have assumed that r and r are smooth. The above 
theorems may also be modified to the case when r and r are only piecewise smooth. 

3.2. Hf'/ -Approximation of Singular Functions. We are interested here in ap- 
proximating functions that are defined on the curve r and have square root sin- 
gularities at the end points. For simplicity, we consider a function u defined on 
I = [-1, +11 by 

(3.8) u(x) = (x + 1)1/2X(X) 

where X is a C0? function satisfying 

X(x)=1, -1 < x < -1/2, 
=0, 1/2<x<1. 

We consider the approximation of u in the fj'/2(I)-norm by functions in ?7A,p(I). 
Let D = [-7r, w]. (We may consider I to be a closed circle.) Let u be transformed 

to the periodic function ui on I by the mapping x = cos (, i.e., ui(() = u(x). Then 
we see that 

(3.9) ui() = (1 + cos )"1/2X(cos) = V/x(cos ()(cos((/2)). 

The following lenuna is taken from [7]. 

LEMMA 3.1. One has IIUIIH1/2(I) IIH1Iuij) for any u E H' 

The main theorem of this section is the following. 

THEOREM 3.3. Let u be defined by (3.8). Then for p = 1, 2,... there exists a 
polynomial up in .9p2(I) such that 

(3.10) uO(?1) = u(?1) 

and 

(3.11) IIu - UpIH1/2(I) < Cp-llog/2p. 

Proof. We first consider the image ui of u, which (being even) may be written as 
00 

(3.12) uW() = Zak cos k(. 
k=O 

Define 

(3.13) u? := up + ~u, 
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where up E &4 (I) is defined in terms of the Chebyshev polynomials Tk (x) = 

cos(k cos-'x) of degrees less than or equal to p by 
P P 

(3.14) up := E ak cos k= akTk(cos (), 
k=O k=O 

and where u is a linear function such that uo satisfies the condition (3.10), i.e., such 
that 

(3.15) U(? 1) = (u - u)() = (ui - i)(cos-( 1)). 

We now estimate the coefficients ak in (3.12). We have 

ak = cf UiCcosk d = C | (cos ()cos cos ke d 

= C Xo(cos ) [cos (( 2 ) () + cos ((2k-1) c)] dC. 

Here, C may represent different constants. Integrating by parts gives 

ak= { [X(cos.) (sin ((2+ ) - 2k- 1 +sin ((2g ) c) 2U 1)h 

+j| X' (cos ()sin~ k[sin ( (22 ) 1) 2k - 1 

((2k 1) ) 2k- ] d} 

Using x'(?i1) = 0, further integration by parts yields 

1 ~~~~~~~~~~~~1 
Iakl < C {j + X' (cos ) [os((k 2)) 2kk+ 1 

-2cos ( (k+2)) 2k + 1 

+ cos (Qk-2) 4) 2k-i1 

-cos((k+2)o) 2k-k] d } - {k2 llo ( [(2k+1)(~2-) (2k +1)(k3 

fsin(k-2 sin(k + - 1 <C{+i+ Jxkcos~~~)s1nsL(-Co+kl)( k ) 

(2k-1)(2k-)(2k-1)(2k +3 ) 

Now, since X" and all the sine functions are bounded independent of k, we obtain 

(3.16) lakI < j2 

We now estimate IIu-Up IIH1/2 (I). By Lemma 3.1, (2.5), (3.12), and (3.14), we have 
00 

iU - UPIHl/2(I) = | u- UPIH1/2(f) = C ak( + k 
k=p+1 

<C? (+2)1/2 

-V k 
p+l 
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which behaves like 
0C C 
1 T3 dx=2 

Hence, 

(3.17) IIu - UpIIH1/2(I) < - 
p 

Next, we estimate IIUIIH1/2(I). Since iu is linear, 

(3.18) IIUIIH1/2(I) < C{|u(+1)1 + Iu(-1)I}. 

Now for any x, by (3.12), (3.14), 

(3.19) Ktu -up)(4) 
< 

E lakl < 
c 
<2 < 

k=p+1 k=p+1 

Using (3.15), (3.19), and (3.18), we see that 

(3.20) IIUIIH1/2(I) < - 

which combined with (3.17) yields 

(3.21) IIu - UpIIHl/2(I) < ? 

By (2.3), we know that 

(3.22) IIu - UPIIHl/2(I) < IIu - U_IIH1/2(I) + 1(1 - x2)-1/2(u -uO)IIHO(I) 

Hence we must bound the second term. We have 
+1 

f( 1- x2)-1 (U - u0)2 dx 

(3.23) r1/p r- 1/p f1r 

= (lOll/p +| (fU -0s)2(sin C)-1 d. 
\ O l/p 7r-i/p 

Now 1/sin C is bounded on [l/p, ir - l/p]. Hence, using (3.19), 

7r-1/p C 7r- /p 

| (u- _ )2(sin C)-1 dC < 2 PSn) d 
(3.24) l/p p l l/p 

< 2 log p. 
p 

Also, let [a] denote the integral part of a. Then it may be verified that with 
00 00 

u := E a2j + E a2j+1 cos 

j=[(p+2)/2] j=[(p+l)/2] 

we obtain with (3.13) 

u(C) - (t0() = a2j(cos 2j- 1) + a2j+1 (cos(2j + 1) -cos .), 
j=[(P+2)/2] j=[(p+l)/2] 

which satisfies 

(u- ut)(cos((S1)) = 0 
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as required in (3.10). Hence, 

(iu- it0)2 < ?0 a2j{(cos(2jo - 1) 2 

i=[(p+2)/2] 

j+( 1 ai+ (cos(2j + 1) - cos)) |} 
i=[(p+l)/2] I 

/ 00 
< C | a2jsin2lk 2 

i=[(p+2)/2]J 

, . ~~~~~~~~~2) 

+ E a2j+ 1 sin(j + 1) C sin.k) 2 } 

j=[(p+l)/2] 

so that 
rl/p 

fl/P (u-)2(sin l)-1 d P 

( ~~~~~~~~~2 

(3.25) < cj ([E a2jsin2jI) (sin C) 1 dC 

+f ( E a2j+lsin(i + 1)CsinjC) (sini C) dC} 
O =[(P+')/2] 

Now, sinjC < jC, so that for any e > 0, 

sin2j < jsinjCj,jsinjCI2-, < (jC)y for 0 < C < 1/p. 

Hence, using (3.16), the first term on the right side of (3.25) is bounded by 

f? ( )2=(p2)/2] d p2(l) f s P 

C p-2= C. 

The second term may be similarly bounded, as may the term 
ir 

- ( i-)2 (sin )l- 1 dC. 
X-l/p 

P 

Using this with (3.23), (3.24) gives 

||(1x) -1/2 (uU? ? < C log' /2 p 

which combined with (3.21)-(3.22) yields (3.11). O 
In Section 4 we will use Theorems 3.1 and 3.3 to bound the error made when a 

function that is smooth in the interior of F and behaves like (3.8) at the end points 
is approximated by functions in Vp(F). 
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3.3. 1-11/2 -Approximation of Singular Functions. In this section we consider 
the approximation of functions u defined on I = [-1, +1] of the form 

(3.26) u(x) = (x + 1) / X(X), 

where X is as before. We are now interested in approximating u in the j-1/2 (I)_ 

norm by functions in Yp(I). To this end, we first prove the following lemma. 

LEMMA 3.2. Let f E H1/2 (I). Then f' E fH-1/2 (I) and 

(3.27) If'jIIft-1/2(I) < CIIfIIj1/2(I). 
Proof. Let 0/ E CO (-1, 1). Define ?,* to be the extension by 0 of ?, to R. Then 

it may be easily seen that 0/*' = ?,*, so that 

(3.28) 11V11|H-1/2(I) ||? IIH-1/2(R) = 110 |1H-112 (R) 
< CIH ) II IIH1/2(R) < CIL2II (I) 

since 4E e CO' (-1,1). (The inequality (3.28) can be verified taking Fourier trans- 

forms, for instance.) 
Now let f E H1/2(I). We use the following definition, from [11], for the 

fj- 1/2 (I)-norm: 
I (fI0 4'L2 (I)I 

11 11 - /2( ) 
ECO? (-1,1 ) I1 +1 H 1/2 ( ) 

Hence, with 

(fI,1')L2(I) =-(f, ?, ) L2 (I) 

we obtain 

11flIft-1/2(j) Su I(fk0%~2(I)jI 
l lb I - /2( ) EC-?(-1,1 ) 11 

I H1/2( I) 

< SUP IIfI11)1/2(=) 110 suHp/ (I) 

/ECo (-1,1) Il IIH1/2(I) 

<_ Cllf Jj|H1/2 (I) 
by (3.28). This proves the lemma. O 

With Lemma 3.2 we obtain the following analog to Theorem 3.3. 

THEOREM 3.4. Let u be defined by (3.26). Then there exists a polynomial up 
in Y9@p(I) such that 

(3.29) llu - upII|l-1/2(I) < Cp-1 logl/2p. 

Proof. Let 
rx rx 

w = f u(t) dt = 2(x + 1)1/2X(x) - 2 (t + 1)1/2X'(t) dt = Wl + W2. 

By Theorem 3.3, there exists vp E p (I) satisfying 

liwi - V| HJ,1/2(I) < Cp- logl/2p. 

Also, since x(x) is smooth, W2 lies in H2-c for any E > 0. Applying Theorem 3.1, 

there exists vp E 3p(I) satisfying 

IIW2 - V2 11ftl/2(I) < CP-I(2c1/2)l0g1/2PjjW2||H2-e(I) 

< Cp-log1/2p. 
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Taking vp = vi + v2, we have 

11w - VpII|H 1/2(I) < Cp-, log/2p. 

Finally, using Lemma 3.2 and taking up = vI, we obtain (3.29). 0 

4. The p-Version for Boundary Elements. Before we apply the approxi- 
mation results of Section 3 to the Galerkin solutions of some integral equations of 
the first kind, let us recall some basic facts on the Galerkin method. The key to 
the error analysis of Galerkin's method is the following result by Hildebrandt and 
Wienholtz [15] (see also [11], [21]). 

LEMMA 4. 1. Let H be a Hilbert space with dual H' (not necessarily identified 

with H), and let A be injective and continuous from H into H' satisfying a Garding 
inequality. Let u E H denote the solution of 

(4.1) Au = f, 

where f E H', and let UN E SN C H denote the solution of the Galerkin equations 

(4.2) (AUN,V) = (f,V) for all v E SN C H. 

Furthermore, assume that for any q5 E H there exists ON E SN with q = limN+oo ON 

in H. Then, for N large enough, the Galerkin equations (4.2) are uniquely solvable 
and with a constant C independent of U, UN and N, there holds the error estimate 

(4.3) IIu - UNII < Cinf{IIu - VNII: VN E SN}, 

where denotes the norm in H. 

Next, we list several boundary value problems which can be reduced to strongly 
elliptic integral equations, i.e., the corresponding integral operators satisfy a 

Garding inequality in appropriate Sobolev spaces. Therefore, by Lemma 4.1, the 
corresponding boundary element Galerkin methods converge, and the quasioptimal- 
ity (4.3) holds, which together with the approximation results of Section 3 leads to 
error estimates for the p-version. 

The Neumann screen problem in acoustics describes the scattering of a plane 
wave at a hard obstacle r. Here, r is given by an oriented open arc, being a 
finite piece of a smooth curve in R2. The orientation defines the normal vector n 
pointing to the side r2 (see Figure 1). The opposite side of r will be denoted by 
r1. The scattering problem gives rise to the problem: Find the pressure amplitude 
field u E H1 (Or n K) for every compact subset K c R2 satisfying 

(/ + k2)U = O in Or = R2\r, n 

(4.4) 09U 9U X2 r 
=g91, 92 =g2Z 

a9n ri On r2 x1 

F IGURE 1 

Here, k 0, Imnk > 0, and 91,92 E H-1/2(r) are given with g := 91g 92 gE 

ft-1/2(r). In addition, we require the Sommerfeld radiation condition 

(4.5) a - iku = o(r-1/2) and u = O(r-1/2) as r = lxl -? oc. 

From [23] we know that for Im k > 0, k $ 0, the problem (4.4), (4.5) has no eigen- 
solutions, and furthermore it can be reduced to a hypersingular integral equation 
on r. 
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THEOREM 4.1 [23]. Let 91, 92 and k be given as above. Then there holds: (i) 

u E H1(Qr n K) for every compact subset K C R2 solves (4.4), (4.5) if and only if 

the jump [u]lIr E Hi/2(r) satisfies the integral equation 

(4.6) D[u](z) := -2 ][u](S) 
2 

(z, S) dS = f(z), z E r, 

with 

(4.7) f (Z) := 91 (Z) + 92(Z) + 2 X(91 ()92(S)a b(z, S) dSsX 

where 

(4.8) D(Z, ) :=4H(1) (klz - ?J) 

and H(1) is the Hankel function of the first kind and order zero. (ii) There exists 

exactly one solution 4 E H1/2 (r) = [u]lIr of (4.6). 

The proof of the assertion (ii) in [23] hinges on the fact that D is a strongly 

elliptic pseudodifferential operator of order 1. Therefore, there exists a constant 

qy > 0 and a compact mapping Cl: H1/2(r) -) H-1/2(r) such that 

(4.9) Re((D + C1)?P0?P)L2(r) > 'Y110IflIIf1/2(r) 

for every 4' E Hl/2 (r). This yields that D is a Fredholm operator of index zero, 

and the bijectivity of D thus follows from its injectivity, which is guaranteed by 

the above assumptions on the wave number k. Note that the assumptions on gi, 92 

imply f EH-/2(r) 

Using localization and Mellin transformation, Stephan and Wendland derive in 

[23] the following explicit regularity result for the solution of (4.6) near the end 

points Zl, Z2 of r. 

LEMMA 4.2 [23]. For 0 < a < 1/2 let gj E H1/2+f(), j = 1,2, be given. 

Then the solution [ulir E H1/2(r) of the integral equation (4.6) has the form 

2 

(4.10) [ulIr = E /2Xi + vo with vo E H3/2+f(r), ai E R. 

i=l 

Here, pi denotes the Euclidean distance between z E r and the end point zi of r. 

Xi is a C? cutoff function with 0 < Xi < 1 and Xi = 1 near to zi, Xi = 0 at the 

opposite end point, i = 1, 2. 

The p-version Galerkin method for the hypersingular integral equation (4.6) 

reads: Find vp E vpo(r) such that, with f E H-1/2(r) given by (4.7), for all 

op E vpo(r) there holds 

(4.11) (Dvp, qp)L2(r) = (f, Op)L2(r) 

Here, Vo(r) denotes the set of continuous, piecewise polynomials of degree < p 

which vanish at the end points of r, as introduced in Section 2. Note VP (r) c 
fj1/2 (r). There holds the following convergence result for the Galerkin scheme 

(4.11). 
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THEOREM 4.2. Let p be sufficiently large. Then the Galerkin equations (4.11) 

are uniquely solvable and for the error between the exact solution [u]lr E H1/2(r) 

of (4.6) and the Galerkin solution vp E Vo(r) we have 

(4.12) II[u]-VpIIfl/2(r) < Cp 1 log1/2p) 

where the constant C depends on u but is independent of p. 

Proof. We observe that the operator D in (4.6) fulfills the requirements on A in 

Lemma 4.1 with H:= H1/2 (r), and H' = H-1/2(r) since D satisfies the Garding 

inequality (4.9) and D is bijective from H1/2(r) onto H- /2(r) by virtue of Theo- 

rem 4.1(ii). On the other hand, {Vp(r)} is a sequence of approximating subspaces 

of H1/2(r) as p -+ oo, and therefore vp(r) is a candidate for the subspace SN in 

Lemma 4.1 with p instead of N. Thus, the convergence of the p-version for the 

Galerkin procedure (4.11) is an immediate consequence of Lemma 4.1. The rate of 

convergence in (4.12) follows from the quasioptimality (4.3) together with the reg- 

ularity result (4.10), where the approximation result (3.11) is used to approximate 

the singular part in (4.10), and Theorem 3.1 is used to approximate the regular 

part vo. O 

Remark 4.1. (i) The decomposition (4.10) shows that the exact solution 4' = [u] Ir 
of the integral equation (4.6) belongs to H16(r) for any E > 0. Therefore, the 

h-version of the Galerkin procedure for Eq. (4.6) gives only an estimate of order 

O(h1/2) for the Galerkin error, if a uniform mesh is used. 
(ii) Application of the estimate (3.2) to the quasioptimality estimate (4.3) gives, 

with 4' E Ht-c(r), 

1lfVplHl,(r,< Cp 1/2+e logl/2pI1fl011_ 

The better estimate (4.12) follows from Theorem 3.3. 

The Dirichlet screen problem in acoustics describes the scattering of a plane wave 

at a soft obstacle r. With r being an open arc as introduced above, the scattering 

problem becomes: Find the pressure amplitude field u E H1('r n K) for every 

compact subset K C R2 satisfying 

(4.13) ( + k2)u =0 in r = R2\, u= onr, 

together with the radiation condition (4.5) for given g E H'/2(r) and k :$ 0, 

Imk > 0. 
We know from [22] that with the above restrictions on the wave number k the 

Dirichlet problem (4.13), (4.5) has no eigensolutions. Furthermore, this Dirichlet 

problem can be reduced to a weakly singular integral equation on r [22]. 

THEOREM 4.3 [22]. Let g E H1/2(r) be given and k $ 0, Im k > 0. Then there 

holds: (i) u E H1(Qr nQ K) for every compact subset K C R2 solves (4.13), (4.5) if 

and only if the jump [9u/9n]Jr E H-1/2(r) satisfies the integral equation 

(4.14) V[n] (z) := -2 f [n] (s')'(z, s) d8s = 2g(z), z E r, 

where (P is given in (4.8). 
(ii) There exists exactly one solution ?, e H1/2(r), ?, = [9n/9n]Ir of (4.14). 
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(iii) Let g E H3/2+r (r) , < or < 1/2, be given. Then with the notation of Lemma 
4.2 the solution [au/9n]jr E H-1/2(r) of (4.14) has the form 

r~~i ~2 
(4.15) [ = E aipt /2Xi + 00 with iPo E HI/2+?r(r), ai E R. 

The proof of assertion (ii) in [22] uses the fact that the single-layer potential 
operator V is a strongly elliptic pseudodifferential operator of order -1. Therefore, 
there holds with a constant '12 and a compact operator C2: H-1/2(r) - . HI/2(r) 

the Garding inequality 

(4.16) Re((V + C2)P,1')2(r) > '12I1I)l--1/2(r) 

for any 4 E fj-1/2(r) 
The decomposition (4.15) is obtained in [22] by localizing the weakly singular 

integral equation (4.14) and applying the Mellin transformation. The explicit form 
(4.15) of the solution near the end points zi, i = 1,2, allows us to derive optimal 
error estimates for the Galerkin solution. 

The p-version Galerkin method for the weakly singular integral equation (4.14) 
reads: Find op E sp(r) such that with g E H'/2(r) 

(4.17) (VOp, I1p) = (2g, qr) for all qp E Sp(r). 

Here, sp(r) denotes the set of piecewise polynomials of degree < p subordinate to 
a partitioning of r as introduced in Section 2. Note sp(r) c (r). 

THEOREM 4.4. Let p be sufficiently large. Then the Galerkin equations (4.17) 
are uniquely solvable, and the error between the exact solution 4 of (4.14) and the 
Galerkin solution op E sp(r) of (4.17) satisfies 

(4.18) |lf - |pIIX-l/2(r) < Cp llogl/2p 

with a constant C independent of p. 

Proof. Owing to the Garding inequality (4.16), application of Lemma 4.1 yields 
for the choices A = V and H = H-1/2 (r) with H' = H1/2 (r) the convergence 
of the Galerkin scheme (4.17). Note that {sp(r)} as introduced in Section 2 is a 
sequence of approximating subspaces for H-1/2 (r) as p - oo. The estimate (4.18) 
follows from the quasioptimality (4.3) together with the regularity result (4.15), 
where (3.29) is used to approximate the singular part in (4.15), and Theorem 3.2 
is used to approximate the regular part 0'. 0 

The exterior Neumann (Dirichlet) problem in acoustics describes the scattering 
of a plane wave at a hard (soft) obstacle given by a bounded domain Q in R3. For 
simplicity we assume that the boundary r of Q is a closed, smooth, simply connected 
surface. Then the scattering problem leads to the problem: Find u E Hllc (R3\1Q) 
satisfying 

(4.19) (AL+k2)u=O inR3\Q 

(4.20) 9 = o onr (Neumann) 

or 

(4.21) u = f on f (Dirichlet) 
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for k $ 0, Im k > 0, together with the radiation condition 

(4.22) 
au 

iku = o(r-l), u = O(r-1) as r =lxl -- oo. 

Here we make the general assumption: 

In the exterior Neumann (Dirichlet) problem in R3\Q let k2 be 
(4.23) different from the eigenvalues of the interior Dirichlet (Neumann) 

problem in U. 

The restriction to the three-dimensional case is only for simplicity. Of course, 
we can derive analogous results also for the corresponding 2-D problems. Easy 
modifications of the procedure in [16], [20] lead directly to a boundary integral 
equation method for the Neumann and the Dirichlet problem. One immediately 
obtains existence and uniqueness results analogous to Theorems 4.1 and 4.3. Let 
us first consider again the Neumann problem (4.19), (4.20), (4.22). 

THEOREM 4.5. Let g E H-1/2(F) be given with fj gds = 0. Then, with k as 
above, there holds: 

(i) u E Hll.(R3\F) solves (4.19), (4.20), (4.22) if and only if u E H1/2(F) 

satisfies the integral equation 

(4.24) Du(z) := -2 J u(S) a I d(z, s) dsz = i(z), z E r, 

where 

eikIz-fl 
(4.25) '(Z' ) -4xlz - j 

and 

(4.26) 9(z) = g(z) - 2 g(f) a I(Z, ') ds. 

(ii) There exists exactly one solution u E H1/2(f) of (4.24). 
(iii) Let g E H8(r), s > -1/2, and f be COO. Then the solution u of (4.24.) 

belongs to H8+l(F). 

Correspondingly, using the direct approach of [20], [22], one obtains for the 
Dirichlet problem (4.19), (4.21), (4.22): 

THEOREM 4.6. Let f E H1/2 (I') be given. Then, with k as above, there holds: 

(i) u E Hj1 ,(R3\FQ) solves (4.19), (4.21), (4.22) if and only if 9u/9n E H-1/2 

satisfies the integral equation 

(4.27) V3 (z) := -2] 3-(S)((z, ')dss = f(z), z E r, 

with (P as in (4.25) and 

(4i28) Ther exiftz) + 2 ec one on e(z F) dsf 

(i)There exists exactlyi one solution Auli)n rE HT-1/ M nf (4.27). 
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(iii) Let f E Hs(F), s > 1/2, and f be Cl. Then the solution 9u/9n of (4.27) 
belongs to H8- 1 (F). 

Proofs of Theorems 4.5 and 4.6. For brevity we sketch only the main steps. The 
equivalence (i) between the boundary value problems and the integral equations 
is standard and follows immediately from Green's formula (see [16], [20]). The 
existence and uniqueness results (ii) in Theorems 4.5 and 4.6 are based on the 
strong ellipticity of the pseudodifferential operators D and V, i.e., with constants 

1, f2 > 0 and compact mappings Ci: H1/2(F) H-1/2(F) and 02: H-/2(F) 
H1/2 (i), there hold the Garding inequalities 

(4.29) Re ((D + cl)v, ) > ?lIIVI1lH2(r) 

(4.30) Re ((V + C2) ) > ?2 11iII Hl12(r) 

for all v E H1/2(F) and EP e H-1/2(F). Hence, D: H1/2(f) . H-1/2(F) and 
V: H-1/2(F) H1/2(F) are Fredholm operators of index zero. Under the as- 
sumption (4.23) we have for k $ 0, Im k > 0, that the integral equations have no 
eigensolutions. Hence, the above mappings D and V are bijective, yielding assertion 
(ii). The regularity results (iii) in Theorems 4.5 and 4.6 follow in a standard way 
from the ellipticity of the pseudodifferential operators D and V (see for example 
[19], [20]). o 

Finally, we consider the Galerkin equations for. the integral equations (4.24) and 
(4.27) and show the convergence of the p-version. 

The Galerkin method (p-version) for the integral equation (4.24) reads, with 
Vp (r) defined by (2.7): 

Find vp E Vp(f) such that, with E E H-1/2(F) given by (4.26), there holds for 
all 5p E Vp(f) 

(4.31) (Dvp,l P)L2() =(9 P)L2 

Correspondingly, the Galerkin method (p-version) for the integral equation (4.27) 
reads, with Sp(f) given by (2.6): 

Find op E Sp(f) such that, with f E H1/2(f) given by (4.28), there holds for all 
Op E Sp(f) 

(4.32) (VW,p ,0P) L2() = (f ,P) L2 (r 

THEOREM 4.7. Let p be sufficiently large and g E H(f), s > -1/2. Then 
the Galerkin equations (4.31) are uniquely solvable. Let u E H+l (f) be the exact 
solution of (4.24) and vp E Vp(f) be the Galerkin solution. Then we have for 
8 > -1/2 

(4.33) IIU - VPIIH1/2(f) < Cp (8+1/2) 
1191H8(7) 

with a constant C independent of u, g and p. 

Proof. Obviously, since Garding's inequality (4.29) holds, the assumptions of 
Lemma 4.1 are satisfied if we choose A = D, H = H1/2(F) H' = H-1/2(F) and 
SN = Vp(f) c H1/2(F). Note that F is a closed, bounded, C? surface. Thus, 
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for p large enough, Lemma 4.1 guarantees the unique solvability of the Galerkin 
equations (4.31) and the quasioptimal estimate for the Galerkin error 

(4.34) IIu - VPIIH1/2(r) < Cinf{Ilu - WpIIH1/2(i): wp E Vp(f)}. 

From Theorem 4.5 (iii) we know that for s > -1/2, with a constant C, 

(4 35) IIUIIH-1+1(f) < C11916s(f)' 

Therefore, we can apply the approximation result (3.1) of Theorem 3.1 to (4.34) 
and obtain (4.33) by using (4.35). o 

THEOREM 4.8. Let p be sufficiently large and f E H8(f), s > 1. Then the 
Galerkin equations (4.32) are uniquely solvable. Let 9u/9n E H-1 (r) be the exact 
solution of (4.27) and /p E sp(r) be the Galerkin solution. Then we have for s > 1 

(4.36) | n -lp < Cp (s 1/2) If 1H8(1) 

with a constant C independent of au/9n, f and p. 

Proof. Again, application of Lemma 4.1 gives the assertion if we take A =V, 
H = H-1/2(f), H' = H1/2(f) and SN = Sp(f) C H-1/2(P), since the Garding 
inequality (4.30) holds. Note again that F is a closed, bounded, COO surface. From 
Theorem 4.6 (iii) we know that for s > 1, with a constant C, 

(4.37) anu - <?ClIfIIH1(f). 

On the other hand, Lemma 4.1 yields 

(4.38) 1 - P < CSinf {Ep (}r 

Therefore, by applying Theorem 3.2 and Remark 3.1 to (4.38) we obtain with (4.37) 
the desired estimate (4.36). EJ 

Remark 4.2. Theorems 4.7, 4.8 show that for the p-version, the rate of conver- 
gence obtained depends only upon the smoothness of the data. Hence, when f and 
g are arbitrarily smooth, one obtains arbitrarily high rates of convergence. This 
is in direct contrast to the h-version, where the rate of convergence depends in 
addition upon the degree of polynomials used, and is therefore not very high, even 
for smooth solutions. 

Finally, we remark that results analogous to those above can be shown for two- 
dimensional crack problems in linear elasticity, since these problems can be reduced 
to first-kind integral equations like (4.6) or (4.14) for the components of the jumps 
of the displacement or traction across the crack line r. Regularity results analo- 
gous to (4.10) and (4.15) hold for the solutions (see [17], [22], [23]). Hence, the 
Galerkin schemes corresponding to (4.11) and (4.17) will lead componentwise to 
error estimates like (4.12) and (4.18) with obvious modifications. 
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